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1. SUMMARY OF RESULTS

In this paper we discuss interpolation to an analytic function on a compact
set in the extended complex plane IP', by rational functions, whose poles lie
in a disjoint compact set. To expedite the statement of theorems we agree
that for the rest of the paper A and B will denote disjoint compact sets in IP',
and R will denote IP' - (A U B).

An interpolation scheme {ani, bni} consists of a collection of points ani and
bni in IP' defined for every positive integer n and every positive integer i ~ n,
with the requirement that ani =1= bnj for 1 ~ i,j ~ n. The associatedpotential
function Un,t(z) is defined (unless t and z simultaneously lie in the set
{anI"'" ann} or in the set {bnI ,... , bnn}) by the formula

where the brackets denote the cross-ratio. In some discussions the reference
point t is fixed, and we simplify the notation by writing Un = Un,t. Let
{ani' bni} be an interpolation scheme, and! an analytic function defined on
an open set containing the points anI'"'' ann; we say that the (n - I)-degree
rational function r n interpolates to f via the interpolation scheme provided
rn coincides with!at the points anI"", ann and has the poles bnI ,... , bn n-I ,

with the usual agreements concerning multiplicities. A central problem is to
relate the interpolating rational functions and the associated potentials.

An interpolation scheme {ani' bni} lies on A, B if all points ani are in A and
all points bni are in B. The case B = {oo} corresponds to the problem of
polynomial approximation. This problem has been studied by many authors
[6, Chapter 7], and the following definitive result is due to Walsh [6, Sections
7.2-7.4].
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THEOREM 1. Let A be a nonempty compactum in fiJ> such that R = fiJ> - A
is connected and regular for the Dirichlet problem and contains B = {oo}. Let u
denote the unique harmonic function in R which has constant boundary values
at A and satisfies limz->oo(u(z) + log I z I) = 0; and let V = u(A). Let {ani' oo}
be an interpolation scheme on A, B, and Un = nn. oo the associated potentials.
Then the following statements are equivalent.

(Ia) As n --+ 00 we have infA Un --+ V.

(Ib) As n --+ 00 we have Un --+ Uuniformly on compacta in R.

(Ic) If f is any analytic function on A, and Pn interpolates to f via
{ani' oo}, then Pn --+ f uniformly on A.

We turn now to the analogous theory for rational approximation. One
setting for the theory [5; 6, Chapter 8] involves the "dual" problems of
approximating analytic functions on A by rational functions having poles
on B, and approximating analytic functions on B by rational functions having
poles on A. Using a very general topological setting, Walsh [6, Section 8.3,
Corollary 2] showed that a condition analogous to (1 b) is sufficient for the
dual approximation property, and the present author [I, Theorem 2] showed
that Walsh's condition, and a condition analogous to (I a), are both necessary
and sufficient.

The purpose of the present paper is to discuss analogous results for the
"one-sided" problem of rational interpolation [3; 6, Chapter 9], where we are
required to approximate analytic functions on A but not analytic functions
on B, using a topological setting of similar generality. We summarize our
results in the following two theorems. The first is a very general description of
the interrelationship between the behavior of the potentials Un and the power
of the interpolation scheme {ani' bni} for approximating analytic functions.

THEOREM 2. Let A and B be nonempty, disjoint compacta in fiJ> such that
fiJ> - A is connected and regular for the Dirichlet problem. Let {ani' bni} be an
interpolation scheme on A, B and Un the associated potentials with respect to
a fixed reference point in R = fiJ> - (A U B). Then the following statements
are equivalent.

(2a) Ifa subsequence unk converges uniformly on compacta in R, then the
limit function u has a constant boundary value at A.

(2b) If f is any analytic function on A, and rn interpolates to f via
{ani' bni}, then rn --+ funiformly on A.

We next state a theorem which has a form closer to the forms of Theorem 1
and a theorem given by Shen in a different setting [3; 6, Section 9.9]. For this
we need to introduce some more notation. If fiJ> - A is regular for the Dirichlet
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problem, and if band t are distinct points in If:D - A, we let Pb.t be the unique
harmonic function in If:D - A - {b} which has a constant boundary value
at A, vanishes at the point t, and satisfies

lim Pb.tCz) - log I z - b I is finite, if b =f:. 00,
z~b

lim Pb.tCz) + log I z I is finite, if b = 00.
z-'>b

We let Vb.t denote the constant boundary value ofPb.t at A. Now if {ani, bni}
is an interpolation scheme on A, B, then for each n the potential function
Pn.t = (lIn) L.iPb

ni
• t is harmonic throughout all of If:D - A except for the

points bni(i ~ n) and has the constant boundary value Wn t = (lIn) L.i Vb . t
at A. In particular, if A and B are bounded, we may thi~k heuristicallyn~f
Pn.oo as the logarithmic potential due to a unit positive charge on A which has
settled into equilibrium under the influence of a fixed unit negative charge
equally divided among the points bni (i ~ n). In some discussions the
reference point t is fixed, and we simplify the notation by writing Pn = Pn.t
and W n = Wn,t.

THEOREM 3. Let the hypotheses of Theorem 2 hold, and let the data
Un ,Pn, Wn be taken with respect to the same fixed reference point in R. Then
the following statements are equivalent.

(3a) As n -- 00 we have infA Un - Wn -- O.

(3b) As n -- 00 we have Un - Pn -- 0 uniformly on compacta in R.

(3c) If f is any analytic function on A, and rn interpolates to f via
{ani, bni}, then rn -- f uniformly on A.

Theorem 2 gives a general characterization, in terms of the associated
potentials Un, of the interpolation schemes {ani' bni} which can be used to
approximate every analytic function on A. On the other hand, if poles bni
are prescribed, we may use them to compute the data Pn and Wn; then
Theorem 3 gives a characterization, in terms of the associated potentials
Un, of the interpolation points ani which can be used with these poles to
approximate every analytic function on A. We will find it convenient to give
a unified proof of these theorems in Section 3, following some preliminary
results on measure-theoretic potential theory in Section 2.

Under the hypotheses of Theorems 2 and 3, there always exist interpolation
schemes {ani, bni} for which the equivalent statements of the theorems hold
true. In fact, if any poles bni (i ~ n) are preassigned, then there exist points
ani (i ~ n) such that the equivalent statements of the theorems hold true.
This may be proved by methods of Shen [3; 6, Chapter 9] and Walsh
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[6, Chapter 9], who studied the rate of convergence of rational functions
interpolating to analytic functions. Part of the emphasis of the present paper
is in obtaining converse theorems under the weakest possible assumptions,
and in this sense our work is complementary to that of Shen and Walsh.

2. POTENTIAL THEORY IN THE PRESENCE OF A FIXED CHARGE

In the proofs of Theorems 2 and 3 we will use a generalized form of
potential theory which we describe in the present section. We assume that
the disjoint compacta A and B are bounded, and that Ifl> - A is regular for
the Dirichlet problem.

In this paper the word measure will signify a signed Borel measure on Ifl>.
If E C Ifl> is compact we let .A(E) denote the set of all unit positive measures
with support in E.

If u is any measure with bounded support, we introduce the potential
function

uu(z) = Jlog I z ~ t I duet),

wherever it is defined. If {ani' bni} is an interpolation scheme on A, B, we
use the notation an for the unit positive measure on A with lin units of mass
at ani (i ~ n), and f3n for the unit positive measure on B with lin units of mass
at bni (i ~ n). Then we clearly have Un.co = u"'n-Iln .

The following theorem describes mathematically a charge I'" which has
settled into equilibrium on A, in the presence of a fixed charge -von B. It is
analogous to a well known result of Frostman [2; 4, Chapter III], and may
be proved by the same techniques.

THEOREM A. Let v E .A(B). Then there exists a unique measure I'" E .A(A)
for which the reduced energy integral

lea) = JU",_v da, a E .A(A),

assumes its minimum value K. Moreover, the potential u,,-v is continuous at all
points of Ifl> - Band u,,_v(z) = Kfor all z E A.

We indicate the dependence of I'" and K on v in this theorem by writing
I'" = 2'[v] and K = f[v]. There is a close connection between these concepts
and those introduced in the preceding section. For example, if v is the discrete
measure consisting of lin units of mass at each point f3ni (i ~ n), then
Pn.co = U,2'[v] and Wn.co = f[v].
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The following convergence theorem will be needed later.
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THEOREM B. Let {vn} be a sequence of measures in J1t(B), and suppose
that Vn -+ v in the weak-star topology. Then 2'[vn] -+ 2'[v] in the weak-star
topology and .:t'"[vn] -+ .:t'"[v].

Proof We use the notation f1'n = 2'[vn], f1' = 2'[v], Kn = .:t'"[vn] and
K = .:t'"[v]. Suppose we have a sequence of indices n for which f1'n converges
in the weak-star topology and Kn converges: f1'n -+ Y and Kn -+ C. We first
observe that

and hence

On the other hand, we have for each Z E A the estimate

C = lim u"n-vn(z) = lim inf I log I Z ~ t I d(f1'n - vn)(t)

;;? I log I Z ~ t I d(y - v)(t)

= Uy_v(Z),

and hence K ~ f Uy - V dy ~ C. Thus K = C, and since f Uy - V dy = K we
have y = f1'. This proves Theorem B.

3. PROOF OF THEOREMS 2 AND 3

Since these theorems are invariant under Mobius transformations, we may
assume that A and B are bounded sets and that the data Un , Pn, Wn are
taken with the reference point at infinity.

(3a) => (3b). If (3b) fails, we can find a sequence of indices n such that
Un - Pn is bounded away from zero at some point of R. We can find a
subsequence of these indices, by the theory of normal families, such that
Un - Pn converges to a harmonic function g, uniformly on compact subsets
of Ifl> - A. If E > 0 is arbitrary, we see from (3a) that Un - Pn ;;? -E in
Ifl> - A for n sufficiently large. It follows that g ;;? 0 in Ifl> - A. However,
g((0) = 0, since each of the functions Un - Pn vanishes at 00, and we conclude
that g is identically zero in Ifl> - A. This is a contradiction.
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(3b) => (2a). This follows from Theorem B.

(2a) => (3c). If (3c) fails, we can find a sequence of indices n such that
SUPA II - r n I is uniformly bounded away from zero. We can find a sub­
sequence of these indices such that CXn --+ cx and f3n --+ f3 in the weak-star
topology. From (2a) we see that u~_s(z) --+ C as Z E R approaches A. Since
U~-/3 is subharmonic in [pl - A, we have SUPB U~-/3 = C1 < C. Now if
C1 < C2 < C3 < C and if Yj = {z E R : U~-s = Cj}, then we have the
following explicit formula [6, Section 8.1, Eq. (4)] for Z E Y3 :

Thus, if € > 0 is arbitrary, we have for large n

sup II - r n I :(; sup II - rn I
A Ya

L(Y2) SUPV2 II I diam Y2 u B
:(; -2- d( ) d( B) exp(-n(C3 - C2 - E)),

7T Y2' Y3 Y2'

where L(Y2) denotes the length of Y2 . In particular we have supA II - rn I --+ 0,
which is a contradiction.

(3c) => (3a). We begin with the observation that for each n the function
Un - Pn is harmonic in [pl - A and vanishes at 00; we conclude that

infA Un :(; Wn •

If (3a) fails, we can find a sequence of indices n such that infA Un - Wn
is bounded away from zero. We can find a subsequence of these indices for
which CXn --+ cx and f3n --+ f3 in the weak-star topology, and thus by Theorem B,
J-tn converges to J-t = 2[f3] in the weak-star topology, and Wn converges
to W = Jt'"[f3]. Let E > 0 be arbitrary. Since U~-s - U,,-/3 is harmonic in
[pl - A and has the value 0 at 00, we can find a point t E R - {oo} such that
u~_a<t) > W - E, and hence un(t) > W - E for n sufficiently large. We
now apply (3c) to the function fez) = l/(t - z). We have the formula
[6, Section 8.1, Eq. (3)]

fez) _ rn(z) = _1_ TIi,,;;n (z - ani) TIi,,;;n-l (t - bni) ,
t - z TIi,,;;n (t - ani) TIi,,;;n-l (z - bni)

and, hence,
lim n inf [un(z) - un(t)] = + 00.

n zEA

It follows that for n sufficiently large,

inf un(z) ~ un(t) > W - E.
zeA
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Since € was arbitrary, we have

lim inf un(z) = W,
n zEA

a contradiction.
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